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Lecture I: Basic Physics 
 
Introduction to Lecture I: 
 On the Nova Laser at LLNL, we demonstrated many of the key elements 
required for assuring that the next laser, the National Ignition Facility (NIF) will 
drive an Inertial Confinement Fusion (ICF) target to ignition.  The indirect drive 
(sometimes referred to as  "radiation drive" ) approach converts laser light to x-rays 
inside a gold cylinder, which then acts as an x-ray "oven" (called a hohlraum) to 
drive the fusion capsule in its center. On Nova we've demonstrated good 
understanding of the temperatures reached in hohlraums and of the ways to control 
the uniformity with which the x-rays drive the spherical fusion capsules. In these 
lectures we will be reviewing the physics of these laser heated hohlraums, recent 
attempts at optimizing their performance, and then return to the ICF problem in 
particular to discuss scaling of ICF gain with scale size, and to compare indirect vs. 
direct drive gains. 
 In ICF, spherical capsules containing Deuterium and Tritium  (DT)-the heavy 
isotopes of hydrogen- are imploded, creating conditions of high temperature and 
density similar to those in the cores of stars required for initiating the fusion 
reaction. When DT fuses an alpha particle (the nucleus of a helium atom) and a 
neutron are created releasing large amounts of energy. If the surrounding fuel is 
sufficiently dense, the alpha particles are stopped and can heat it, allowing a self-
sustaining fusion burn to propagate radially outward and a high gain fusion micro-
explosion ensues. 
 To create those conditions the outer surface of the capsule is heated (either 
directly by a laser or indirectly by laser produced x-rays) to cause rapid ablation 
and outward expansion of the capsule material. A rocket-like reaction to that 
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outward flowing heated material leads to an inward implosion of the remaining 
part of the capsule shell.  The pressure generated on the outside of the capsule can 
reach nearly 100 megabar (100 million times atmospheric pressure [1b=106 cgs]), 
generating an acceleration of the shell of about 10 trillion gees, and causing that 
shell to reach, over the course of a few nanoseconds, an implosion velocities of 300 
km/sec. When the shell and its contained fuel stagnates upon itself at the 
culmination of the implosion, most of the fuel is in a compressed shell which is at 
1000 times solid density.  That shell surrounds a hot spot of fuel with sufficient 
temperature (roughly 10 keV or 100 million degrees) to ignite a fusion reaction.  
 The capsule must not only be driven hard, but also uniformly over its entire 
surface to cause uniform compression of the fuel to the center. With direct drive, 
this uniform heating of the capsule is caused by simultaneously illuminating the 
capsule from all sides with many laser beams and taking great care (via beam 
conditioning to avoid speckle etc.) to assure that 2 points close to one another on the 
capsule surface are driven with the same illumination. With indirect drive, the 
capsule is positioned in the center of a cylindrically symmetric container called a 
hohlraum. Laser beams enter the hohlraum through holes in the end caps, heat the 
walls of the cylinder, which then radiate soft x rays, filling the hohlraum with a 
bath of radiant energy. This energy causes the fuel capsule to implode. Typically, 
70–80% of the laser energy can be converted to x-rays.   The hohlraum concept leads 
to a natural, geometric uniformity of x-ray flux on the capsule surface, since two 
points close to one another on the capsule surface "look out" at the heated hohlraum 
walls and (for a wall to capsule radius ratio of order 4) see nearly identical large 
sections of the walls (thus making it irrelevant just how non-uniform those sections 
actually are) and hence a nearly identical heat environment and are thus driven 
nearly identically. We now proceed to study these hohlraums. 
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I. History of hohlraums 
 
 The year this lecture is given, 2005, has been designated “World Year of 
Physics” to celebrate the centenary of Einstein’s 1905 publication of 4 “miraculous” 
papers: “photo-electric” effect, Brownian motion, special relativity, and “E=mc2”. 
Interestingly, despite all the revolutionary implications of special relativity (and 
later of general relativity) Einstein’s 1923 Nobel Prize cites the first paper- the 
photoelectric effect. Its role in the development of hohlraum physics is what 
concerns us here. So let us take a further step (or two!) back in time: 
 Human beings have been using “hohlraums” for millennia, in the form of 
kilns – hot ovens that can harden clay pots. Their role in furthering human 
civilization through engendering storage, transportation, trade, and writing is well 
known. Jumping ahead to the late 19th century, scientific inquiry into the nature of 
these ovens matured. As we shall see, an important figure of merit for any system 
near thermal equilibrium is its “optical depth” (τO.D.) - namely the ratio of a system 
length L to a typical mean free path (“m.f.p”). For a kiln a m.f.p. of a typical photon 
inside the walls is about 0.1 µm. The heated depth of the wall is about 1 cm. Hence 
the walls of a kiln have an enormous τO.D. of about 105 and thus a kiln is expected to 
be very close to equilibrium. 
 The spectrum of the electro-magnetic (EM) radiation emerging from a small 
hole of a hot (1000-2000o) oven was measured and turned out to be independent of 
wall material.  Kirchoff also formulated his famous law that in equilibrium 
emissivity = absorptivity, so that the best absorbers make the best emitters. Thus a 
“black-body” whose name (in the optical range of photons) implies complete 
absorption (like an oven with only a small hole), will radiate more than any other 
system at the same temperature T.  This universal blackbody (BB) spectrum 
(emerging intensity [power per unit area per unit solid angle] Iν within a small 
interval of frequency dν vs. ν) was measured and found to have the following 
shape: for small ν, it rose with frequency as ν2T (The so-called Rayleigh – Jeans (R-J) 
fit). It reached a peak (at ν=2.8 T when appropriate units are used, to be discussed 
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below). Then it decayed as ν3e (-ν/T) (called the Wien fit). The quantity Iν is related to 
the isotropic energy density Uν by Iν = cUν/4π and thus both have the same 
spectrum. 
 Besides this experimental work, Wien’s law, derived from purely 
thermodynamic arguments, declared that this spectrum must be in the form of 
Uν = ν3 f(ν/T). Note that Wien's fit clearly obeys his law, as does the R-J fit with 
f(x)=1/x. An immediate consequence of Wien’s law is that the total energy density 
which is an integral over ν, will be U = aT4.  This gives a total I =(σ/π) T4, where 
σ=ac/4. If we ask what the one sided flux F out the small hole will be, in a direction 
(we’ll call x) perpendicular to the plane of the hole we must do an integral over µ of 
I times 2πµ (where µ is the cosine of the angle between a ray and the x axis) from 
µ=0 to 1, and get the well known F=σT4.   
 Planck set out to derive this spectrum. Based on EM theory he found that 
within a given frequency interval dν, an oscillator of mass m, absorbs energy as  
(πe2/3m) Uν where Uν is the (sought after) frequency behavior of the energy density 
of the radiation. He set that equal to the emission from that radiator (since we’re in 
equilibrium the oscillators in the hohlraum wall emit as much as they absorb) 
which, again from EM theory is (8 π2e2ν2/3mc3) Eosc where Eosc is the energy of the 
oscillator. Thus: 
   Uν = (8πν2/c3) Eosc      (1.1) 
 Planck then put forward some not-unreasonable arguments for the entropy 
of a many oscillator state, that resulted in an expression: d2S/dE2 = -1/νE. That 
combined with the classical thermodynamic relation dS/dE=1/T, his Eq. (1.1), and 
Wien’s law immediately resulted triumphantly in Wien’s fit. But the triumph was 
short lived. Most of the data was in the large ν, Wien’s fit regime (for a 1500o oven, 
the spectral peak will be at about a half of an eV, so the optical range (IR to UV of 1-
3 eV where most instruments were available) is well past the peak. As technology 
progressed the far IR (low ν) regime began to give up its secrets, and the Wien fit 
did not fit so well anymore! 
 With the R-J law emerging from the new data, Planck noticed that d2S/dE2 = 
-1/E2 led, as above, to the R-J fit. He was thus quickly led to the form  
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 d2S/dE2 = - 1/ (ν+E)E as a way to possibly cover the whole spectrum.  So now, 
dS/dE = 1/T leads to (and inserting 2 constants h & k that assure proper 
dimensionality within the exponential, as well as a good numerical fit to the R-J 
regime): 
     Eosc = hν / (e(hν/kT) –1)     (1.2) 
And via Eq. (1.1) to:  
    UνΒΒ = (8πν2/c3) hν / (e(hν/kT) –1)    (1.3) 
 This successful fit only begged the question- what was the theoretical 
justification for such a form of the entropy? Planck spent the next “2 most difficult 
months of my life” answering that question. Part of the difficulty was his necessity 
to adopt an approach he previously rejected- Boltzmann’s probabilistic view of 
entropy as S=klnW, where W measures the probability of being in a microstate 
whose energy corresponds to the macro-state whose entropy we seek, along with 
the notion that all microstates are equally probable. Thus we need to calculate the 
multiplicity of states to find S. Following in the path of an earlier calculation of 
Boltzmann, Planck considered a system with N oscillators. He assigned an energy 
to each, but only in artificially assumed integer units (“quanta”) of size Δ.  If the 
total energy of the system is PΔ, then the average energy of an oscillator will be 
E=PΔ/N.  
 Now for the combinatorics (which required the artificial integer assumption 
in order to proceed): A typical possibility of what the system could be, can be 
pictured /written as: “|…|..|…..||…|.| etc.”  Here we have assigned some 
number of energy units Δ (the dots) to each oscillator (the partitions |).  If we 
consider this entire accounting enterprise as filling in N+P blanks with P dots and 
N partitions, there are (N+P)! ways to do so and we divide by N!P! to avoid 
“double” counting choices that are the same but written in different order.  This is 
what “W” represents in S = k lnW. Using Stirling’s approximation, defining x= 
P/N=E/Δ we find S/k={(1+x)ln(1+x) – xlnx} and then via dS/dE=1/T we get 
E=Δ/(e(Δ/kT)-1)). Then Wien’s law forces Δ=hν and the derivation is complete. 
 Planck stopped there (with finite, quantized Δ) because it gave the right 
answer. Had he followed Boltzmann he would have taken Δ “classically” to zero 
and “derived” E=kT and thus via his Eq. (1.1) the R-J fit. Planck assumed that other 
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workers would figure out the microphysics of oscillators and the meaning of these 
quanta. He spent over a decade trying to minimize the implications of this radical 
notion.  Planck’s paper was quite tersely written and difficult to follow, and 
remained rather neglected for 6 years. This sets the stage for 1905 and Einstein’s 
“photo-electric” paper. 
 Einstein was troubled (as he would be throughout his career) with the lack of 
unity in physics- mechanics dealt with particles but EM theory dealt with waves. 
He interpreted Planck’s work as still being in the classical camp (after all Planck’s 
Eq. 1.1 is entirely from EM wave theory) so he mostly ignored him. Einstein did use 
Eq. 1.1 to immediately derive the R-J law (to him E=kT was obvious) and to point 
out the “ultra-violet” catastrophe- that the R-J law, if assumed to hold for all ν, 
would make U diverge. 
 Einstein concentrated on the volume (V) dependence of the entropy S of the 
radiation field in a hohlraum. He defined Sν dν= V f (Uν) dν and of course EEMν dν= 
VUν dν.  He then just inverted the Wien fit to find -(k/hν)ln(Uν/αν3) = 1/T. He then 
set that equal to dS/dE (sounds familiar?!) which is equal to df/dUν. This gives f = -
(k Uν /hν)[ln(Uν/αν3) – 1], which gives Sν dν= (k Eν/hν) [ln(Eν/Vαν3dν) – 1].   He 
then considered a change in volume from V0 to V, and the ensuing change in 
entropy: 
  SBB – S0 = (kEν/hν) ln (V/V0)     (1.4) 
and compared it to an N particle classical ideal gas result: 
  Sig – S0 =  ( kN )    ln (V/V0)      (1.5) 
Einstein then reminded us what Eq. (1.5) means in the S = k lnW context.  The 
probability a localized particle will find itself in a volume V is (V/V0), and that N of 
them will is W=(V/V0)N.  Comparing Eqs. (1.4) to (1.5) immediately told Einstein 
that light of energy Eν  behaves as if it is made up of N localized particles (quantized 
photons), each with energy  hν. 
 It is only the next year, 1906, when Einstein turned his attention to 
calculating the T,ν behavior of S, that he understood enough of what Planck did to 
see the profound connection to his 1905 photon paper, namely: Planck’s quantized 
oscillators emit Einstein’s quantized photons- and thus Quantum Mechanics (QM) 
is born! 
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 Since the notion of photons (vs. EM waves) proved far too radical for nearly 
everyone, further “ hohlraum-inspired” developments also prove crucial. In 1907 
Einstein reasoned that the vibrating molecules in a wall also radiate (far IR) and as 
oscillators should follow Eqs. (1.1) & (1.2). So he took dE/dT via Eq. (1.2) to find the 
specific heat and to predict it vanishing as T approaches zero. A wide community of 
physicists was quite interested in this, measured the prediction to be true, and QM 
became accepted. Planck still resisted for another decade, but eventually gave in, 
and in 1919 won the Nobel Prize for …QM! 
 It is not until 1917 that Einstein developed a full theory of photon-matter 
interaction. The less well-known part of that paper deals with how atoms in motion 
equilibrate with a photon field via momentum conserving interactions that prove 
the photon concept. This calculation is a forerunner (by 60 years!) of the laser-
cooling concept. The better-known part of the paper deals with equilibrating atoms 
at rest (whose excited states are Maxwell-Boltzmann (MB) distributed in thermal 
equilibrium) with the photon field via energy conserving interactions. This is a 
forerunner (by 45 years) of the laser concept. In it Einstein derives the Planckian 
(Eq. (1.3)) in 3 lines! In a two state atom (with energy levels 1 & 2) he balances 
(spontaneous & stimulated) emission with absorption: 
    (A21 + B21Iν) N2 = B12 IνN1       (1.6)  
along with the MB distribution requirement: 
    N2/N1 =e -(E21/kT)     (1.7) 
Solve this for Iν (along with the high T limit forcing B21=B12) and get: 
     IBBν = (A/B)/(e(E21/kT) –1)    (1.8) 
Wien’s law forces E21=hν and (A/B) = ν3 and then the constants are derived by 
having IBBν be equal to the R-J fit in the classical low ν regime. The Planckian is thus 
derived. Another important outgrowth of this treatment, which is a perfect lead-in 
to our next section, is a useful form of Kirchoff’s law: The spontaneous emission 
“source term” Jν = A21N2 is, by Eq. (1.6), related to the net absorption by:  
    Jν = A21N2= B(N1-N2)IBBν = κ’ IBBν.    (1.9) 
Since Jν is a property of the atom, if the atom is in LTE (collisionally thermalized 
levels) this “source term” result will hold for other Iν choices. We now turn our 



 8 

attention to precisely that situation, where Iν  is not exactly the Planckian, and find 
how it propagates through matter. 
 

II. Radiation transport 
 

We now ask the question: What if the radiation / matter were not exactly in 
equilibrium, but nearly so? Consider the gain and loss of a beam of photons as it 
propagates along its trajectory “s”. 

     dIν/ds = Jν – κ’Iν = κ’ (IBBν -Iν)     (1.10) 
Here for simplicity we neglect many things (such as scattering, higher order terms 
such as time derivatives, etc) that are treated at great length in textbooks. To make 
progress easier (indeed to reduce the problem to its core physics) we define an 
optical depth coordinate: 
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This then allows us to re-write Eq. (1.10) simply as  
     dIν/dτν = IBBν -Iν      (1.12) 
Use a standard integrating factor exp(τν) technique, integrate from τν (0)=0 to τν (L) 
and get: 
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From this 2 lessons emerge immediately: 1) A source contributes from within 
approximately 1 optical depth. Beyond that distance its influence/contribution 
rapidly diminishes in an exponential fashion. 2) An optically thick system (in our 
case τν (L) being large) naturally approaches a BB spectrum. To see that simplify Eq. 
(1.14) by having no incident flux, I0, and let IBBν   be constant in space and get: 
 
   Iν (L) = IBBν  [1 – e-τν (L) ]   (1.15) 

Let us now return to Eq. (1.10) and solve it in the so-called “diffusion 
approximation”. We restrict ourselves to a planar geometry where quantities vary 
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with x. Thus a ray moving along in some arbitrary direction “s” that makes an angle 
θ with the x axis (and define µ=cos (θ) so ds=dx/µ),  makes Eq. (1.10) become: 

      µdIν/dx = κ’ (IBBν -Iν)     (1.16) 
We assume that Iν deviates slightly from the isotropic IBBν  :   Iν = IBBν   + µψ 

Plug that into Eq. (1.16) and obtain immediately: 
      Iν = IBBν   - µ  (1 / κ’) d IBBν /dx         (1.17) 
Note that the second term is smaller than the first by 1/τ. We can now calculate 

the net flux through an area perpendicular to the x-axis: 
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We can now integrate over ν, and define a Rosseland (ν averaged) mfp (1/κ’), 
which is weighted in that average by dU BBν/dT and get: 
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This is a principal result that we will (eventually) use in the equation that 
couples the radiation to the matter. It tells us that radiant heat diffuses in a way 
entirely expected from diffusion theory- namely that the flux is a diffusion 
coefficient times a gradient of an energy density, and that the diffusion coefficient is 
a free streaming velocity times a mfp divided by 3. The final form for F of Eq. (1.19) 
tells us an equivalent message in a useful form- namely that the diffusive flux is the 
free-streaming flux reduced by the number of mfps (the optical depth) of the 
system. 

Before proceeding to some applications we prepare the way with one more 
exercise in formalism. We integrate Eq. (1.17) over ν, and define φ = σ T4, and get: 

   I = (φ/π) + (3µ/4π) F = (φ/π) – (µλ/π) dφ/dx  (1.20) 
This form will now be very useful in exploring the diffusion picture in a regime 

where in principle it does not belong- namely near a boundary. Thus we encounter 
what are known as Milne boundary conditions. 

Consider a source flux φD going from left to right, as it encounters matter that 
fills space from x>0, and is heated to a depth xF, and whose surface T at x=0 is given 
by (φB/σ)1/4  (namely TB). The source flux to the right at x=0 is given by: 
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and the flux, to the left at x=0, from the matter re-radiating is given by: 
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so the net flux at x=0 is given by: 
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This net flux must be carried inward into the material via the diffusive  flux  that we have 
already calculated in Eq. (1.19) namely F = -(4/3)λdφ/dx. Equating those 2 expressions 
for flux gives us: 
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For a linear profile of φ(x) = φB{1-(x/xF)}, Eq. (1.21) tells us that φD = φB { 1 + (2/3)λ/xF}}, 
can which be thought of in the following way: that φD is a value higher than φB as if the 
linear profile if φ(x) was extended backward into the x<0 regime by an amount 2/3)λ. 

 The same kinds of considerations can be applied to the surface of a star. Consider a 
half space x<0 filled with matter and whose surface temperature at x=0 is TS. Then the 
flux to the right from the star is given by: 
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and the flux to the left onto the star from the of vacuum of space is given by: 
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thus the net flux from the star is: 
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But this net flux at x=0 must be supplied by the diffusive flux from within the star, 
which as usual is F = -(4/3)λdφ/dx. Equating the 2 expressions for flux then gives: 
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This can be thought of again for a linear profile of φ(x) = φs{1-[x/(2λ/3)]}, as if the 
surface that “truly” is emitting, is at a distance x = –2/3λ within the star where 
TBrite=T(x=0 – (2/3)λ) = 21/4TS.  This result is consistent with our “lesson (1)” from 
above, namely that emission comes from within about 1 mfp. 
 With all of this formalism now established, we are finally in a position to 
apply the results from this section to a variety of ICF relevant situations. We begin 
by finding a highly relevant case where Eq. (1.19) plays a crucial role. 
 
 

III.  Solving the Diffusion Equation 
 

 The first application we seek is the most relevant to the ICF indirect drive 
problem. We consider a hohlraum illuminated by a laser of energy EL. It enters the 
hohlraum (usually made of a high Z material such as Au) and is absorbed along the 
inner walls where it is aimed. The hot plasma that ensues is a copious source of x-
rays. We parameterize this process by a conversion efficiency ηCE. Thus we assume 
that  ηCE EL worth of x-rays now floods the hohlraum and uniformly bathes the wall 
areas of all that it sees. Some of the x-rays are absorbed by the capsule (the goal of 
the exercise after all!) and some unfortunately leave the hohlraum through the laser 
entrance holes (LEH) necessary to get the laser into the hohlraum in the first place. 
Since the capsule ablator is normally of low Z material that does not re-radiate back 
much, it, like the LEH (which is the ultimate in energy sinks- a vacuum) absorb all 
the flux σT4 that impinges on it. Thus we know immediately how to calculate those 
2 energy loss channels: σT4  times the area of the capsule and LEH respectively, 
integrated over time.  
 Our major challenge is to calculate the wall loss, since it does re-radiate 
energy to a significant degree and moreover, the majority of area in the problem is 
the hohlraum wall. It is made of a high Z matter which when heated by the flux of 
incident x-radiation will re-radiate much of it back. Typically, as we shall see, the 
re-radiation factor is not enough to disqualify the walls as the “chief energy loser”- 
the preponderance of wall area still make the wall the principal sink of energy in 
ICF hohlraums. Since the incident x-rays are absorbed by remaining bound 
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electrons of the multiply ionized ions of Au, and then are re-radiated in a random 
direction as the electron finds a lower energy level to return to, we have a typical 
random walk / diffusive process. Collisions also keep the levels at near MB 
distributions (a situation called Local Thermodynamic Equilibrium (LTE)). This 
near total thermal equilibrium, near isotropic radiation field situation is precisely 
the conditions under which we derived the diffusive flux results from the previous 
section.  
 Thus our goal here is clear- to calculate the energy absorbed by a high Z wall 
subject to an external flux of x-rays. The time rate of change in internal energy (per 
unit volume) would be equal to the divergence of the diffusive flux. If the flux were 
divergence free then as much energy that entered a volume element of matter 
would then exit it and we’d expect no net change in the internal energy. For our 
system there are 2 fields of energy to consider: matter and radiation. The energy 
density of matter we write as ρeth, where e is the specific energy, and we know what 
it is for radiation: aT4. It turns out that the radiation energy density is quite 
negligible for the ICF problem. For the diffusive flux there are 2 contributions. We 
know what is for radiation:  F = -(4/3)λdφ/dx. For matter, the electron heat flux is 
similarly given by a Dd(energy density)dx = (veλe/3)d(ρeth)/dx. It turns out that for 
above about 20 eV and density 1 g/cc the radiative flux dominates. Thus our energy 
equation should read:  
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This is a complicated non-linear PDE. Before proceeding with any formal solutions, 
we can see how far simple dimensional analysis can take us. We write down Eq. 
(1.23) dimensionally: 
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(Note a slight change in nomenclature- we follow from here on out the 
convention that opacity κ is defined as 1/ρλ [whereas in Eq. (1.9) it was simply 
1/λ]. It is still true though that we always correct the absorption for the stimulated 
emission, so that it is net absorption). We can recast this in terms of the “Marshak 
front areal density” mF: 
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What we mean conceptually by this procedure is as follows: A non-linear heat 
wave of radiation (called a Marshak wave after R. E. Marshak (1958)) progresses 
diffusively through the material. Picture, at a given time, a flat-topped T(x) profile 
that eventually takes a sharp nose-dive to zero at a front position xF. We will soon 
see that a T(x)= T0 {1 –[x/xF(t)]}1/4 is a good approximation to the actual solution. 
Since T is nearly flat and therefore at its surface value for most of x, the dimensional 
analysis works particularly well in giving us a feel for the time and T dependence of 
the front position xF or mF. To complete this analysis we need to know the T,ρ 
dependencies of κ and e. For Au we find that  

   κ = κ0 ρ 0.2 / T 1.5   and    e = e0T 1.6 / ρ 0.14      (1.26) 
We note the remarkable near cancellation of dependencies of the product κe, 

which appears in the denominator of mF in Eq. (1.25). Why is this? Well the basic 
reason is that the opacity κ depends on the number of bound electrons left in the 
partially ionized high Z ion, whereas the internal energy e depends on the opposite- 
the number of free electrons liberated from that high Z ion. (Note that e scales as  
[(Z+1)/A] T). We can be somewhat more precise.  The T dependence of e can be 
understood as follows. We expect an ion to be ionized to the degree that its 
ionization potential Ip is of order the thermal temperature T (electron collisional 
ionization is the dominant process). But in a Bohr-like atom, Ip scales a Z2. Thus 
expect Z to scale as T1/2 and e as T3/2 which it very nearly does! The opacity is quite 
complicated, but certainly it should decrease with T because its number of bound 
electrons is decreasing as T increases. For the density dependence we note that in a 
Saha equilibrium the higher the overall density, the lower the ionization state- its as 
if the free states are more full and prevent bound electrons from occupying them- 
it’s as if high density “pushes the electrons back into the atom”. Thus the higher the 
ρ the lower the Z so e will scale as (1/ρ) to a small power. Since lower Z means 
more bound electrons, the opacity κ will increase as ρ to a small power. In any 
event Eqs. (1.25) and (1.26) lead to: 

    
03.0

2/195.1

~
!"

oo

F

e

tT
m

•
       (1.27) 



 14 

With such a tiny ρ dependence you may think our task is done. But what we are 
really after is the energy (per unit area) in the wall which dimensionally is emF and 
e has some small but non-negligible density dependence. So our task in this 
dimensional analysis exercise is not complete until we find an expression for the 
density in terms of T and t. 

One way to do this is to assume we are deep into the supersonic regime- namely 
the heat wave progresses so fast through the material it hardly has time to move 
and thus the density is constant in space and time and at its initial value ρ0. This 
will occur, at a given T and t, for very low densities (imagine a high Z Au foam). 
To see why, recast Eq. (1.27) in terms of xF=mF/ρ and then differentiate with respect 
to time to get a velocity of the heat front. At a given T & t that speed will scale as 
ρ−1.03. The sound speed cs scales as e 1/2 and thus as e0 

1/2T 0.8ρ-0.078, a very weak ρ 
dependence. Thus we can ensure that the heat front speed exceeds the sound speed 
for low ρ. Putting ρ=constant=ρ0 into Eq. (1.27) and into e gives us a scaling for 
energy loss per unit area in the supersonic regime: 
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 The exact opposite extreme is the highly subsonic regime, in which the heat 
front progresses very slowly through the solid density high Z material. What ends 
up happening is an isothermal rarefaction wave progresses through the heated 
material, significantly decompressing it and inducing much hydrodynamic motion 
in this “blow-off” plasma. 
 A simplified (and certainly dimensionally correct) way to proceed (Rosen 
(1979)) is to find an “average” density in this blow-off by reasoning that after some 
time t, an amount of mass (per unit area), mF(T,t,ρ),  has been heated (reached by 
the heat front), and it expands into the vacuum at the sound speed cS(T,t,ρ), so 
simply set ρ=mF/cSt. This accomplishes what we sought- a way to relate ρ 
(implicitly) to T & t. But since all ρ dependencies of mF and cS are power laws it is 
straightforward to solve for ρ explicitly in terms of T & t, and then plug back in to 
solve for mF and then for E/A. Before we do that, we note a particular piece of luck 
here. Since m is formally a running integral of ρ over x (it’s basically a Lagrangian 
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coordinate), then our simplified dimensional equation ρ=mF/cSt is really an integral 
equation for ρ, whose solution is exactly the isothermal rarefaction! So proceeding 
with the substitutions we eventually get: 
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This completes our dimensional analysis. The hard work of determining the exact 
coefficients is what we briefly outline next. 
 The full set of hydrodynamic equations, in Lagrangian format (m, not x) is:
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Here V=1/ρ. We supplement these equations with equations of state a la Eq. (1.26), 
along with P=re/V where we find r=0.25 to be reasonably accurate. For the record, 
we complete Eq. (1.26) by presenting the coefficients: κ0= 7200. g/cm2 and e0= 3.4 
MJ/g. In Hammer & Rosen (H&R) (2003) we solve (1.30) by means of a perturbation 
technique with a small parameter ε = 1.6/(4+1.5)=0.29 the numbers being the power 
law T dependencies of e, aT4, & κ respectively. We do so for a particular, self-similar 
assumption on the T(x,t) behavior, namely T=TBtkf(m/mF(t)) We find to zero order, 
a T spatial profile f=(1-( m/mF(t))1/4 where mF(t) =mF0t(1+4k)/2.  The ρ and u profiles 
are, to the same zero order, those of an isothermal rarefaction. The first order 
solutions differ from all these by quantities of order ε. In H&R we verify energy 
conservation, integral E(x,t)dx  = integral F(x=0,t)dt  through order ε2, where E 
includes internal and kinetic energy, and F is the absorbed flux. In addition, in H&R 
we solve the simpler supersonic equation for arbitrary TB(t). 
 We quote here the results for 2 useful choices of k: 0  & 0.18. The scaling of m 
& E/A are precisely those of Eq. (1.29) as they must be! The coefficients are mF0 = 
(9.9,7.4) 10-4 g/cm2 respectively, and E/A=(0.58,0.39) hJ/mm2 respectively. The 
absorbed flux is given by F=F0T3.34 t-0.41 with coefficients F0=(0.34,0.46) hJ/ns/mm2. 
Note that E/A is simply the time integral of F. Also be aware that for the k=0.18 
case you must remember to put the time dependence of T=T0t 0.18 into all of these 
equations. Thus for example the E/A (for k=0.18) = 0.39 T0 

3.34
  t 1.2 hJ/mm2.  
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 It seems unfair to present all of these results without giving the reader a 
sense of how they come about. So we now proceed to show an illustrative example 
of an exact solution for the supersonic (constant ρ) case. Thus we start with 

   
!µ

"#

$

%

"&

&

&

&
+'

+

+
==

2

4

2

2

f3

g

)4(

16
,T

x
CT

t
withC   (1.31) 

where here we generalize the T,ρ power law behavior of κ and e and write them as 
κ=(1/g)T-αρλ and e=fTβρ−µ. Thus for Au (see Eq. (1.26) α=1.5,β=1.6,λ=0.2,µ=0.14, and 
the coefficients are (1/g)=7200. g/cm2 and f=3.4 MJ/g. In the early 1950’s Louis 
Henyey found 2 exact solutions to Eq. (1.31). This work remains unpublished so in 
H&R we devoted an appendix to present it. The simpler of the 2 solutions is what 
we now present. Henyey took a power law time dependence tp for the boundary 
temperature with p=1/(4 + α −β), which for Au is approximately 1/4. He then 
finds: 
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The reader should verify this by plugging Eq. (1.32) into (1.31) and experience the 
fun of terms miraculously canceling and verifying that indeed Eq. (1.32) solves Eq. 
(1.31) exactly. Note that this solution looks very much like the advertised zero order 
solution of H&R, namely a spatial profile that looks like {1-(x/xF(t))}1/4 and with the 
T=TBtk=1/4, we get the front advancement behavior xF(t)=xF0t(1+4k)/2(=xF0t1 here). Since 
p=1/4 is a small number it is easy to accept that other (non-exact solution) cases 
that might be of interest such as k=0, will simply be of order ε different from this 
solution. Using this exact solution we can derive some interesting quantities, 
especially the very useful one of wall reflectivity, albedo. 
 

IV. Solving for the Albedo 
 
 With an exact solution in hand let us proceed to calculate the fundamental 
quantity of diffusion processes, the optical depth τ. To simplify the notation set 
y=x/xF0t. Then, in this supersonic (constant ρ) regime, λ=(κ0ρ0

)−1Τα, thus 
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Note that τF represents the total number of mfps within the Marshak wave. Note 
that it increases with time as t/t1.5/4=t 0.6. We can invert Eq. (1.33) to get: 
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In Figure (1) we show the T(y) and T(τ) profiles for a situation ε different than our 
exact solution, namely a “NIF-like” 250 eV,  7.7ns “flat top” (TB=T0t0) drive. It shows 
shapes very much like those predicted by Eq. (1.34). For the record, the H&R 
solutions for that case are T(y)=TB(1-y 1.2)0.25(1-0.05y) and T(τ)=TB(1-[τ/τF])0.42(1-
0.1[τ/τF]) which indeed are only ε different than Eq. (1.34). Also for the record, 
putting in the constants we find for that case that τF=8.4T0 0.65 t 0.4 (with T in heV and 
t in ns) = 34 by the end of the 7.7 ns pulse. 
 
 
 
 
 
 
 
 
 
 

Figure 1 a) T(m) profile & b) T(τ) profile for a 250eV 7.7 ns drive. (Dotted lines 
are analytic theory and solid lines are numerical solutions). 

 With the temperature profile now written in its fundamental form, in terms 
of τ, we can now straight away solve the radiation transport equation to find how 
much this “source profile” I = σT(τ)4/π will radiate back into the vacuum. Since we 
know most of the radiation will come from near the first mfp, we can simplify the 
calculation by expanding T(τ)4 near the surface (τ/τ F small), and we now proceed to 
integrate the emission I(µ) all along a ray that makes an angle θ with the x axis with 
cosθ=µ: 
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(Note that because all of our quantities vary with x, we have defined τ here as τ(x), 
not as the simpler τ(s) as before, hence the τ/µ terms in Eq. (1.35) vs. Eq. (1.14)). 
Then the total reemission can be found by integrating over all angles of emission: 
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Another immediate outgrowth of Eq. (1.34) is our ability to calculate the absorbed 
flux (through the x=τ=0 front surface) immediately from the last form for F of Eq. 
(1.19) 
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When considering Eqs. (1.36) and (1.37) we are struck with a paradox. We would 
expect the sum of the re-radiated flux (Eq. (1.36) plus the absorbed flux (Eq. (1.37)) 
to add up to the incident flux σTB

4t4p. But they do not! The 1/τF terms have 
coefficients –2/3 and +4/3. What went wrong? 
 The answer lies in the Milne boundary conditions. We have defined all of 
our Marshak wave solutions in terms of TB which is the matter boundary 
temperature. This makes no statement whatsoever as to what is the required 
external drive temperature TD needed to achieve that boundary temperature. That is 
what the Milne boundary conditions tell us. In fact Eq. (1.21) tells us that 
TD

4=TB
4(1+(F/2T4)). If we employ that relationship into our energy accounting all 

turns out well, as we now demonstrate. 
 Using Eq. (1.37) we can re-write Eq. (1.36) as re-emitted flux =φ B (1-(F/2φ)), 
and Eq. (1.37) as absorbed flux F=φ B (F/φ), and from the Milne boundary condition, 
incident flux = φ B (1+(F/2φ)). Now it is self-evident that energy is conserved and 
that incident flux= absorbed + re-emitted flux. Now with energy conservation 
safely within our grasp we can consider albedo α as the ratio of re-emitted flux to 
incident flux that conserves energy: α = 1 – (F/φ). Since F/φ is proportional to 1/τF, 
and τF grows in time, we expect both the albedo and the Milne correction to 
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approach 1 as time increases. This is shown rather clearly in Fig. (2). The conditions 
of Fig. (2) are a Ta2O5 40 mg/cc foam driven by a flat T of 185 eV. 
 
 
 
 
  
 
 
 
 
 
 

Figure 2 a) Milne correction & b) albedo as they both approach 1 with time. 
 
 Before proceeding, let’s make sure we haven’t gotten lost in all of the math. 
Let us ask what we might have guessed the formula for emitted flux to be. Based on 
our “lesson number 1” we know that emission comes from about the first mfp. To 
fine-tune it a bit from our Milne boundary condition calculations it seemed like 2/3 
of a mfp was the more precise answer. Thus we would expect re-emission to be T4 
but T is evaluated at 2/3 of a mfp into the Marshak profile. Thus using Eq. (1.34): 

  ]
)3/2(

)
4

4
(1)[(T]

)3/2(
1[(t)T)3/2(T

F

4

B

)
4

4
(

F

4

B

4

!"!
! "

#
#$#== #

t      (1.38) 

 which is precisely the re-emission formula we calculated in Eq. (1.36). One more 
“reality check” is in order. Eq. (1.35) tells us to expect the re-emission to be angle 
dependent so experimentalists must be aware of this as they choose angles of 
detection. The physics of this may well be called “Marshak limb brightening”. 
Basically, if you look normal to a wall, the emission coming from 1 mfp comes from 
deep in the wall, and thus at a low T within the Marshak wave T(x) profile. If you 
look at a shallow angle to the wall, then along that ray you will reach 1 mfp in, yet 
you will hardly be different than x=0, so you will be getting emission from a high T 
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very near the surface of the T(x) Marshak wave profile. Fig. (3) illustrates this 
principle for the same conditions as Fig. (2). 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 a) Angle averaged albedo vs. time & b) Albedo vs. angle for 3 different 
times. Cos(480) = 2/3 represents the angle averaged result 

 
 As a final application of this albedo section we compare predictions based on 
our analytic work with full simulations and data. Jones et al (2004) measured the 
albedo of a large hohlraum wall that was fed by a smaller hotter hohlraum. The flux 
out of the exit hole of the small hot hohlraum was measured and that is the incident 
flux impinging onto the large hohlraum’s wall. The flux re-emitted by that larger 
hohlraum was also measured and the ratio was interpreted as an albedo. There are 
4 data points. The first 2 are Au at 70 eV and at 100 eV (both at 1.5 ns) with 
experiment and simulation giving albedoes of 0.53 and 0.63 respectively. Using α = 
1-(F/φ) with F given by H&R for the hohlraum relevant k=0.18 case (more about 
that in the next section), namely F/φ = 0.46/T0.7t0.53 ( T in heV, t in ns) we would 
predict albedoes of  0.53, 0.63 respectively as well! For a Au0.2Dy0.2U0.6 “cocktail” 
(more about those in Lecture 2) at 100 eV and 1.5 ns we predict a slight decrease in 
opacity and an albedo of 0.62, which again is what the experiment measures and 
the simulations predict. For U0.86Nb0.14  the experiment shows an albedo of 0.65 but 
the simulations predict 0.53. We do not understand that result to date. Our model 
matches the simulation (that’s the best it can do in any event!) with a prediction of 



 21 

0.54. Thus our simple formulae do a very good job of matching complex 
simulations (which in turn, often match complex experimental data). 
 

V. Solving for the hohlraum temperature 
 
 We are now very well positioned for our principal application- for a given 
hohlraum geometry and incident laser pulse, predict the hohlraum temperature. 
We will then compare that with data so let us first describe the measurement 
techniques (Kaufman (1994)). We typically obtain T by two different methods. 
Through a hole in the can (sometimes on the side, sometimes a view through the 
LEH) we measure the x-ray flux via a dozen or so roughly 100 eV wide (“Dante”) 
channels that span an energy from 50 eV to 5 keV with most of the energy in the 
100-1000 eV range where most Planckian spectra lie for Ts of order 100-300 eV. A 
Planckian is fit to the resultant spectrum, and it usually matches in both brightness 
(intensity) and color (shape). Examples of Dante spectra are given in Figure (4).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4  Observed spectra from a) a laser illuminated spot b) an un-illuminated spot 
on the hohlraum wall. 
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Since these channels have some decent time resolution we can get T(t) information 
as well. The second method involves an Al “witness plate” on the side of the 
hohlraum. Radiative flux absorbed sub-sonically in the Al launches a shock. When 
the shock breaks out the back of the Al it lights up in the visible range, and a 
streaked optical signal detector records the time history of the shock breakout. For a 
stepped witness plate we can derive a shock speed, hence a pressure, hence a drive 
T. For a wedge shaped witness plate we can even derive a more sophisticated pulse 
shaped T(t). In general the 2 methods match, as do the Lasnex (Zimmerman(1975)) 
simulations. See Fig. (5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 a) Time history of a shaped pulse from Dante and from Lasnex simulation.  
b) Applying that Lasnex simulation to an Al wedge witness plate predicts the 

experimentally observed temporal history of the shock break out. 
 
 To calculate all of this analytically we adopt a simple “source=sink” model. 
The source is the laser energy EL, and as described above in the beginning of Section 
3, we assume it is converted to x-rays with some conversion efficiency, so that now 
ηCE EL worth of x-rays bathe the hohlraum walls. (If the absorption fraction is less 
than one, of course we should take that into account as well). We will set that 
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source equal to the energy sinks, which for a very simple hohlraum (no capsule) is 
the wall loss (which we have calculated as E/A of the previous 2 sections times the 
area of the walls, and the LEH loss which is the time integral of σT4 times the area of 
the laser entrance holes. Before presenting those results, let us first introduce 
convenient "radiation hohlraum units” (“rhu”) in which T is measured in hectovolts 

(hundreds of eV), area in mm2, time in ns, mass in gm and energy (a bit clumsily) in 
hectojoules.  With these units, σ = 1, (well, 1.03 to be exact) and normalized 

irradiance is 1013 W/cm2 (=hJ/mm2 ns = 102 J /10-2 cm2 10-9 s) and similarly, 

normalized power is 1011 W (=hJ/ns = 102 J /10-9 s).  Thus a 100 eV (=1 heV) 

hohlraum radiates out a hole with a flux of  σT4 = 1 (in rhu) = 1013 W/cm2.  
 As an example we take the following “scale 1” hohlraum illuminated on the 
Nova laser at LLNL in the 1990’s. It was a gold cylinder of length L = 2.5 mm, and 
radius R = 0.8 mm, and on each end a disk sealed the cylinder. Each disk had a 
“50% LEH” namely a laser entrance hole of radius 0.4 mm. One immediately 
calculates the wall area AW = 15.6 mm2 and ALEH=1 mm2. The source energy, a “flat 
top” laser power of 100 – 300 hJ/ns for a duration of 1 ns. (= 10-30 TW). Our 
simulations predict a conversion efficiency to x-rays of  ηCE = 0.7 tns

0.2. The efficiency 
increases with time in part because the albedo behind the conversion layer builds 
up with time. This time behavior helps explain an important experimental 
observation, that T rises as t0.18, hence our interest as quoted above with the k=0.18 
case. We can understand that result in the following way. Equating the x-ray 
source, ηCE EL = ηCE PLt which scales as t 1.2 to the principal x-ray sink, the wall, EW 
which scales as T3.3t0.6 (Eq. (1.29)) we see that these two terms will balance iff T = 
T0t0.18! Conversely, if we wish to have a truly flat T = T0t0, we need a PL(t) that 
“droops” in time. 
 Let us now proceed directly to the calculation. For the 30 TW experiment, the 
source of x-rays (at 1 ns) will be 0.7PLt =(0.7)(300)(1) =210 hJ. The wall loss EW will 
be (using the k=0.18 results from H&R quoted in the discussion that followed Eq. 
(1.30) above) 0.39 T0

3.3 t1.2 AW = 0.39 T0 3.3 (1) (15.6) = 6.24 T0
3.3 at 1 ns. We must also 

calculate the LEH loss. The flux out the LEH will be T 4ALEH so we integrate t4(0.18) in 
time and get ELEH= 0.58 T 4  at 1 ns. Solving 210 = 6.24 T0 3.3 + 0.58 T 4 results in a 
T=2.75 with 176 hJ of wall loss and 34 hJ of LEH loss (justifying our claim that most 
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of the loss is in the walls). The resulting prediction of 275 eV matches data and 
simulations quite well. Repeating this calculation for say 10 TW (70 replaces 210) 
yields a T=1.99 again in agreement with data and simulation. The results for the 
entire database are shown in Figure (6), and shows that our simple model of 
source=sink with sinks calculated by H&R organize the database very nicely. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6  Our simple source=sink model (line) organizes the 1 ns database very well. 
Solid points are from Nova. L means Lasnex 2-D simulation. N means NIF early light 

experiments (2 ns pulses, with T here extracted from that data at t=1 ns). 
 
 As a final application of what we have learned so far, consider scaling to 
bigger systems (say from Nova to NIF to a reactor scale driver). We seek to improve 
the coupling efficiency defined as energy absorbed by the capsule to incident laser 
energy. Since most of the energy is absorbed and turned into x-rays, and most of 
those are lost into the walls, this principally reduces to a question of the capsule loss  
divided by the wall loss. Now the capsule ablator is low Z so it just sucks up 
radiation energy and does not re-emit much, so it absorbs mostly like an LEH, so 
Ecap scales roughly as AcapT4t . The wall loss EW we now know well, scales roughly as 
0.5AWT3t1/2.  Thus the ratio, the coupling efficiency scales as (Acap/AW) 2. T t 1/2. To 
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improve the coupling which of these four factors can we change? The wall ratio is 
mostly fixed by geometric smoothing symmetry arguments. The value for the drive 
T is mostly fixed by hydrodynamic instability and laser plasma interaction physics. 
However as we increase the driver energy scale, the size scale will increase as will 
the time scale. So that is at least one natural way the coupling will certainly 
improve. An entire other route to improving the ratio, would be to change the 
number 2. Namely, are there wall loss mitigation tricks that we can test on present 
lasers that can be used on future laser driven hohlraums to improve the coupling 
efficiency? Answering that question is the subject of Lecture II. 
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Lecture II: Hohlraum optimization 
 
Introduction to Lecture II: 
 
 There is always, in practice, pressure on the scientists to keep a laser from 
operating safely away from its damage thresholds. That means using less laser 
energy. So we ask the question: Can the NIF reach ignition while using only 1 MJ of 
energy rather than 2? To do so we would need to find ways to make hohlraum 
walls less lossy than the standard solid Au. In this lecture we discuss the state of 
research that has been trying to answer this question. 
 
VI. Cocktails 
 
 When we consider Eq. (1.29) we see that in order to lower the E/A of a wall 
loss, we need to lower e and to raise k. Since e scales as Z/A the higher the ZN (or 
A) the lower (at a given T) will be the ionization state Z and hence e. Thus either 
replacing Au with U or at least mixing in higher ZN elements into the wall will 
lower e. Moreover, if we do mix in higher ZN elements, at a given T, they will have 
different atomic levels and structures and their opacities, if ZN is chosen properly 
will be high at frequencies when Au is low. Overall this “cocktail” of materials can 
thus accomplish both things. A U0.6Dy0.2Au0.2 cocktail is an example that at NIF like 
temperatures of about 300 eV can, by Eq. (1.29) save nearly 20% in wall loss. We 
have chosen to test the concept via a baseline Au hohlraum at the Omega Laser at 
URLLE. A “scale 0.75” cylinder (L=2.06 mm, R=0.6 mm, with 66% LEH (R=0.4 mm) 
so that AW= A end caps + A cyl wall = 1.2 + 7.8 = 9.0 mm2 and ALEH = 1 mm2. The incident 
flattop power was 20 TW for 1ns. As in the discussion of Section V we use the 
k=0.18 results of H&R. We infer (from some experiments) about an 8% reflectivity, 
so with a 68% conversion efficiency we get as a source at 1 ns 101 hJ. We set that 
equal to the wall loss 3.5T0 

3.3 and LEH loss 0.6T0
4, solve for T and get T=2.55 with 76 

hJ wall loss and 25 LEH loss. The 255 eV is very close to the observed temperature.  
Early experiments with cocktails (Orzechowski (1996)) compared the burn-

through times tbt of Au foils (Rosen(1996)) placed across a hole in the side of a 260 
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eV hohlraum, to those of AuGd cocktail foils. A delay in burn-through signal for the 
cocktail was clearly seen. By Eq. (1.28) we expect (again for a k=0.18 case) that tbt 
should scale as mT0

-2(eκ)1/2, so the higher κ of the AuGd cocktail causes the delay. 
Since then we have tried to measure the rise in T for a full cocktail (vs. Au) 
hohlraum at the same laser drive.  

We fit our latest opacity/ EOS theory of Au as κ = 6544 ρ 0.18/T 1.43 (cm2/g) 
and e = 3.33 T 1.54/ρ 0.15 (MJ/g), and of U0.6Dy 0.2Au0.2 is κ = 5670 ρ 0.10/T 0.90 (cm2/g) 
and e = 0.95 eAu. The cocktail has a “flatter”, less sensitive T, ρ behavior because it 
averages over several elements. We also note that the opacity of cocktails does not 
exceed that of Au until past 130 eV. Using that input, H&R predicts for k=(0,0.18), 
for Au an E/A = (0.598,0.398) T3.3t0.6 (hJ/mm2) respectively and for the U0.6Dy0.2Au0.2 
E/A = (0.604,0.407) T3.1t0.57 (hJ/mm2) respectively. Thus, at 270 eV and 1 ns, the wall 
loss ratio (cocktail/Au) is (0.84,0.85) respectively while a full multi-group 
simulation gives (0.85,0.87), very close to H&R theory but differing mostly because 
the opacity is hard to fit with a single power law. All of these were for TB scaling as 
tk. If we simply let TD scale as tk we have Milne conditions kicking in and the ratios 
are (0.84,0.88) respectively. For U mixed with 6% Nb by weight (=14 atom %) add 
1% to all those ratios. 

Another outgrowth of these scaling laws is to notice that the wall loss ratio 
scales as T-0.22 t -0.05 for k=0.18 and even for the “flat top “ k=0 case the wall loss ratio 
has a t -0.02 ratio. Thus to the degree that the Omega experiments are not either at the 
full NIF temperature of 300 eV, nor at the NIF pulse length of 3-4 ns, then the 
results from such experiments will be pessimistic in showing a wall loss ratio 
advantage of a cocktail hohlraum over Au than would a NIF ignition hohlraum. 
(The ratio for NIF is about 0.83). All of these time behaviors stem from the fact that 
early in time the lower T parts of the Marshak wave profile are relatively more 
important, and for low T the cocktail is actually worse than Au. 

So let us redo the Omega hohlraum calculation for T with cocktail walls 
(actually shot with U0.86Nb0.14) and thus our E/A wall loss is 0.416 T 3.1 at 1 ns vs. Au 
0.39 T 3.3.  The solution now to 101 = 3.7 T 3.1 + 0.6 T4 is T=2.62 so we expect a 7 eV 
hotter hohlraum than the 255 eV Au hohlraum.  Many shots were done with Au 
end plates and just a cylinder body of cocktail. Redoing that we must solve 101= 
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0.49T 3.3 + 3.2 T 3.1 + 0.6T4 we get 2.61 thus we expect a 6 eV improvement for those 
type of cocktail hohlraums. However, until very recently there was barely any (less 
than 3 eV) difference between Au and cocktail hohlraums- what went wrong? 

We formulated the following hypothesis-perhaps oxygen contaminated the 
cocktail walls in the process of making them. Since cocktail foils don’t necessarily 
get leached from their substrates, cocktails hohlraums certainly do and the leaching 
process may be the key to the contamination. While Au does not bind to O, U & Dy 
certainly do – they are in fact often used as O getters! The trouble with O in the 
cocktail is that they are fully ionized so contribute about twice the Z per unit weight 
than the high Z elements, and thus raise e by raising the specific heat.  

For atomic numbers between 6 and 71 and for T between 1 & 3 heV we find 
the following fits for the specific energy e. The ideal gas law would give eig = 15 
[(Z+1)/A] TheV in MJ/g. Here the ionization state Z is fit by Z = (ZN/71)0.6 16 TheV 0.6 / 
ρg/cc 0.14 . There are non-ideal gas law contributions, principally from ionization 
energy, and we fit those by a multiplier “mult” = 2.5 (ZN/71)0.1Thus e = (eig) 
(“mult”) which we can write as δN/AN. The reader can check that this gives a 
number reasonably close to the one we quoted for Au above. For a mixture of j 
elements we take the ratio e= Σ δNj / Σ ANj. (not, Σ ( δNj / ANj )). So for example for a 
AuNdDy cocktail to be discussed shortly, we find ec/eAu = 1.06 with no oxygen, 1.08 
with 4% O, and 1.22 with 40% O. 

A vivid example of the O problem came from a re-analysis of another burn-
through experiment, that of Olsen et. al. (2003). A AuNdDy cocktail foil burn-
through time (t b.t.c ) was compared to that of an Au foil’s in a 160 eV hohlraum with 
a T that rose as t 0.1. This would lead us to predict that (via the equivalent of Eq. 
(1.29)) the ratio of (κe)c/(κe)Au would equal [(ρΔx)Au/(ρΔx)c]]2.08 times [t b.t.c/t b.t.Au]1.5. 
Plugging in the data that equals [1.9 / 1.5]2.08 times [1.3 ns / 1.45 ns]1.5 = 1.38. Now 
theoretically the  (κe)c/(κe)Au ratio should 1.22 which disagrees with the data. But if 
there were an O for each Dy and for each Nd, then theoretically the ratio is 1.36 
quite close (and well within error bars) of the data. Thus due to this re-analysis, we 
“post-dicted” that the sample were fully oxygenated. We then had the target 
fabrication records examined and indeed that was precisely the case! Of course, 
now that we are aware of this issue, future targets can be carefully made without O. 
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Assuming the older hohlraum shots at Omega were also fully oxygenated 
(we’ll never really know- the state of those hohlraums at shot time was not 
characterized) we can redo our source=sink model once again but with a lossier 
wall loss due to the high e due to the oxygen. Now the E/A coefficient is 0.44 and, 
with Au end plates we solve 101 = 0.49 T 3.3 + 3.4 T 3.1 + 0.6 T 4 and get T = 2.575, thus 
we in retrospect should have only expected a 2.5 eV difference from the 255 eV pure 
Au hohlraums, in rather close agreement with what was observed. The good news 
is that very recent shots in which great care has been taken to avoid oxygenation, 
has shown a ΔT much closer to our original expectations for cocktails. Part of the 
way to prevent the oxygen from getting into the sample is to coat it with a thin 
layer of Au. (roughly 0.2 m). Even that layer lowers ΔT somewhat, since we are 
replacing cocktail with Au. However for the NIF, that same thickness of Au can still 
do the Oxygen prevention job, while being an utterly trivial fraction of the Marshak 
depth and hence not cause any worrisome detriment to the cocktail wall loss 
advantage. Thus with a few more confirmatory shots, we are well within grasp of 
proving the cocktail principle as an energy saver for NIF. 
 

VI. Foam-walled Hohlraums 
 

We now ask the following question: Can we save on driver energy by making 
hohlraum walls out of low density high Z foams, which have less hydrodynamic 
motion (namely less radiation heated and ablated material that streams back into 
the hohlraum interior as a low density isothermal blow-off) and hence, reduced net 
absorbed energy by the walls? We answer this question using our HR analytic 
theory, as well as by numerical simulations. To the degree that the “pure” HR 
theory diverges from the simulations we derive non-ideal non-self-similar 
corrections to the theory that bring it into agreement with the simulations (Rosen 
(2005)). We show that low-density high Z foams can indeed bring a savings of ~ 
20% in the required driver energy. Remarkably, this reduction is universal- 
independent of drive T and its pulse-duration t. We derive an analytic expression 
for the optimal density (for any given T and t) that will achieve this reduction factor 
and which agrees very well with numerical simulations. Such an approach might 
allow more routine operation of the National Ignition Facility (NIF) with laser 
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energy further away from the optics damage threshold, and still provide the 
nominal energy (as originally designed with solid wall hohlraums) to the fuel 
capsule. Reduced hydrodynamic motion of the wall material may also reduce 
symmetry swings, as found for heavy ion beam targets. 

 For the sake of brevity and clarity we will restrict our study here to a drive that 
is constant in time for a duration t. Solving the supersonic Marshak wave, (Eq. 
(1.31) for Au, our small parameter, ε =0.291 and the constant C is given by 4.08 x 10-7 

/ρ2.06 cm2/ns.  For those parameters we find xF
2

 = [(2+ε)/(1-ε)] C T 4+α−β t , which, for 
our case gives xF  (cm) = 0 .0012 T 1.95 t.5 / ρ 1.03.  Our solutions for the energy per unit 
area, E/A, (in MJ / cm2 ) absorbed by the gold wall is: 

E/A = 0.0029 T3.55t.5/ρ 0.17    (for the pure supersonic regime).   (2.1) 
For the sub-sonic solution, we repeat what we presented above: For k=0, we found 
mF(t) = m0 TS(t)1.91 t 0.52  with m0 = 9.90 10-4 g/cm2 and (in MJ / cm2) 

E / A = 0.0058 T 3.35 t .59    (for the pure subsonic regime).      (2.2) 
Comparing Eqs. (2.1) and (2.2) we see (for a typical drive of T = 2.5 heV and 

duration t = 2 ns) that for densities in the neighborhood of 0.3 gm/cc there is clearly 
less wall loss for the supersonic case. Lowering densities further decreases opacity 
and increases specific heat, both in the undesirable direction of more loss to internal 
energy (as per Eq. (1.28)).  Raising densities would be desirable as that would lower 
wall losses even further, but unfortunately it would take us into the subsonic 
regime. The sound speed, CS, at 250 eV in gold is about 60 µm/ns, which (using the 
expression for xF that precedes Eq. (2.1)) exceeds the supersonic heat front velocity, 
d xF /dt , at 2 ns when ρ0 is about 0.5 gm/cc. 

In Fig. (7) we plot E/A vs. initial ρ0 of the wall from Eq. (2.1) (for T = 2.5 and t = 
2.) and we plot the subsonic (“infinite density”) result of Eq. (2.2) as well. We also 
plot the numerical simulation results. Note that Eq. (2.1) closely matches the full 
physics numerical simulations, deep in the supersonic regime (at very low ρ0) when 
little hydrodynamic motion is expected. When hydrodynamic motion is artificially 
turned off in numerical simulations (not shown here), Eq. (2.1) closely matches 
those artificial simulations for all densities.  
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Figure 7 Wall loss (0.1 MJ/cm2) vs. initial wall density (g/cc). Diamond points are 
simulation results. Dashed line: Eq. (2.1). Dotted line: Eq (2.2). Solid line: Eq. 

(2.3). Dot-Dashed line: Eq. (2.4). Drive Conditions: T= 250 eV; Duration t= 2 ns 
 
To account for the divergence of the full physics simulations from our self 

similar solutions we reason as follows: In the supersonic regime but at higher ρ0, 
rarefactions do in fact begin to eat into that portion of the heated wall nearest the 
drive boundary and hydro motion ensues. Consider an isothermal rarefaction wave 
propagating leftward (at speed CS) into an x < 0 half space of temperature T and 
original constant density ρ0, which results in low density material blowing out, 
rightward. If we define  z(x,t) = 1+(x/CSt), then the density profile is given by ρ (x,t) 
= ρ0 exp(-z) and the velocity profile is given by U(x,t) =z CS . Within the rarefaction 
the kinetic energy per unit area at any given time t can easily be found by 
integrating 0.5 ρ U2 over x from –CSt to infinity and is equal to ρ0CS

3t. This calculates 
to 0.0024 ρ0

0.79T2. t  (MJ/cm2) and this matches the full physics simulation’s opinion 
of the kinetic energy. Also that lower density profile within the rarefaction leads to 
a higher specific heat. This too can be easily found by doing a similar integral for ρe. 
We find that this lower density profile contributes an additional µ/(1-µ) fraction of 
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internal energy to that portion (= CSt/xF) of the heated matter overtaken by the 
rarefaction front. (The portion not overtaken is still at its original density.) For our 
value of µ this becomes  0.0011 ρ0 

0.79
 T2.4 t  (MJ/cm2). These two effects together now 

lead to a corrected E/A ( in MJ / cm2) or the supersonic regime: 
E/A = 0.0029 T3.55t .5/ρ0

0.17 + 0.0035ρ0
0.79

 T2.4t   (full supersonic regime)  (2.3) 
The solid curve in Fig. (7) is Eq. (2.3) calculated out to the high ρ0 edge of the 
supersonic regime and largely reproduces the E/A full physics numerical 
simulation curve throughout the entire supersonic regime. While these additional 
energy sinks reduce the full “bonus” of being supersonic that Eq. (2.1) naively 
promises, we still note a nearly 20% reduction from the solid wall result. 

Note too that in Fig. (7), Eq. (2.2) closely matches the full physics numerical 
simulation at the very high end of the initial-wall-density x-axis, deep in the 
subsonic regime. However, in the lower density part of the subsonic regime the 
simulations differ from the infinite density result. We believe that is due to the 
period of time early in the simulation when indeed the heat wave is supersonic and 
therefore less lossy. As the initial density, ρ0, decreases, an increasingly longer 
early-time duration of supersonicity exists. We can correct for this by first finding 
tcatch = 0.17  T2.3 ρ0 –1.9, the time when the rarefaction front, CS t, catches up to the heat 
front (the xF (t) that precedes Eq. (3)).  We then subtract the subsonic E/A (t=tcatch) of 
Eq. (2.2) from E/A (t) of Eq. (2.2) and add in its stead the supersonic E/A(t=tcatch) of 
Eq. (2.3). For our gold parameters, the procedure outlined above leads to a simple 
expression for the correction:  

E/A (MJ/cm2) = 0.0058 T3.35t.59 - 0.002 T 4.7/ρ0 1.1 (full subsonic regime)  (2.4) 
This result largely reproduces the E/A simulation curve throughout the entire 
subsonic regime, as seen in the dot-dashed curve of Fig. (7). 

Since the minimum of E/A vs. ρ0 occurs at densities low enough to be within the 
supersonic regime, we can easily take the E/A derivative with respect to ρ0 in Eq. 
(2.3) and find the optimal density, ρ*: 

 ρ* = 0.17 T 1.2 t -0.5 g’ 0.52 f’ -1.04.        (2.5) 
In the above we explicitly included the scaling of the Au opacity and specific heat 
coefficients (the prime denotes them being scaled to their nominal values which were 
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given above) so that this formula can be used more generally. Plugging this back into Eq. 
(2.3) gives us the minimum E/A * : 

E/A * = 0.0048 T 3.35 τ .59 f’ 0.68 g’ 0.41.        (2.6) 
Comparing this to the E/A of the very high density (solid and above) regime of Eq. 
(2.2) we see that they scale exactly the same way. Thus their ratio implies a 
universal (independent of T and t) savings of 17% when the optimal ρ* is chosen as 
the initial wall density. (Also, self-consistently, ρ* “universally” falls within the 
supersonic regime). 

Fig. (8) shows results from the T=1.25 heV simulation set, wherein we plot the 
resultant E/A curves (normalized by their values at solid density) vs. initial density, 
for 3 pulse lengths varying from 1 to 64 ns. We clearly see the “universal” nature – 
the energy savings (vs. a solid wall) at the optimal density for each t is the same 
value (of about 16%), very close to our predictions. 
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Figure 8  Simulated  wall loss (normalized by wall loss at solid initial density) vs. 

initial wall density (gm/cc). Drive Conditions: T= 125 eV; Duration t: triangles: 64 ns. 
squares: 8 ns. diamonds: 1 ns 



 34 

Full 2-D Lasnex simulations also show that combining both schemes works 
best, namely foam cocktail hohlraums. This idea has been tried in detail for a heavy 
ion reactor scale hohlraum by Callahan (2000). It was optimized via tedious full 2-D 
simulations and a foam density of 0.1 gm/cc is arrived at. It is Au-Gd and as such g’ 
= 0.62 , f’ = 1.04, with T = 2.5 and t=8, leading to our prediction of an optimal 
density of 0.13 gm/cc quite close to the optimized design value. 

 We have recently tested this foam wall as an energy saver concept using a 
cylinder of Ta2O5 made of either 4 gm/cc or 0.1 gm/cc, each with a gold ring hit by 
the laser that served as the x-ray source to drive the rest of the cylinder walls.  They 
were performed by P. Young of LLNL at URLLE. A drooping pulse produced about 
a 100 eV flat-topped drive. A Dante viewed the walls, and the 0.1 gm/cc foams 
were about 15% brighter in accord with 2-D simulations and in accord with the 
“source=sink” approach of this paper, when albedo effects are taken into account. 
More experiments are planned in a more fully enclosed hohlraum geometry. More 
work will need to be done to extend this idea to shaped pulses, for which perhaps 
graded density foams may have to be invoked. 

 
VII. Hohlraums with Axial Shine Shields 

 
Another “trick” to save energy is to emplace axial shields (small Au disks) to 

block the capsule’s view of the cold LEH, published by by Amendt et. al. (1996).. 
The laser beams enter the cylinder through entrance holes in the end cap as usual, 
but propagate through the outer "cold exterior"(“ce”, not to be confused here with 
“conversion efficiency”) section, into the central ”hot interior” (“hi”) section of the 
hohlraum, and impinge on the walls there.  The outer parts are cooler, and the 
aperture through which the radiation flows from the middle (“hi”) to the ends 
(“ce”) is the annulus between the on axis shine shield disk and the cylinder wall. 

The LASNEX "observables" to be explained here are the 228 eV for a 
hohlraum with no shine shields vs. a 241 eV drive on capsule for one with shine 
shields. Why would a hohlraum that introduces about 500J of more wall loss via the 
shine shield disks, actually produce a hotter hohlraum rather than a cooler one? The 
answer (Rosen (1996)) to the paradox is essentially that we have created an inside 
out hohlraum, in which the central section is a “hot interior (hi) hohlraum”, and 
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drives the capsule. Indeed, the outer sections of these hohlraums are “cold exterior 
(ce) hohlraums”, and are predicted by LASNEX to be only about 215 eV. We will 
derive all of these numbers presently, following the calculations of Rosen (1994b). 

The cylinder is 0.8 mm in radius with a laser entrance hole (LEH) of 0.6 mm 
radius. The half length (from mid plane to end cap) of the can is 1.15 mm. The shine 
shield is 0.3 mm in radius and placed on axis 0.55 mm from the midplane, (thus, 0.6 
mm from the LEH). The capsule has a radius of 0.27 mm. Thus the half-area of the 
hot interior hohlraum walls (from mid-plane to shine shield and including the shine 

shield disk area) Ahi is 3.04 mm2, of the cold exterior Ace, 4.2 mm2 , and of the half-

capsule AC, 0.46 mm2. The LEH area ALEH is 1.13 mm2, and the annular area 
between shine shield and wall, Ahi-ce, through which the radiation flows from the 

hot interior to the cold exterior, is 1.73 mm2. A slight complication here is that some 
(about 33%) of the laser energy is deposited along the cylinder wall between the 
axial position of the shine shield and the end of the can; namely there is some of the 
laser source in the cold exterior region. Nonetheless we can generalize our 
treatment of source=sink to account for this entire situation, and we will define EL 
to be made up of two parts ELhi and ELce for those amounts absorbed in the hi and 
ce regions respectively. In our case, for half of the incident 20KJ (= 200 hJ) going into 
the half of the hohlraum being calculated, and at a conversion efficiency of 70%, 
there is 1/2 of 140 hJ of x-ray energy available. If 33% is created in the ce, then 47 hJ 
is available in the hi and 23 hJ in the ce. Defining y= Tce/Thi and appealing as we 
have done throughout this paper to energy balance, and using our Au wall loss 
results for k=0.18 as usual, we find the following: 

The hot interior equation reads: 
ηELhi =        EWhi      +           Ehi-ce              +     EC                         or 

ηELhi = .4Thi3.3Ahi + .6 Ahi-ceThi4(1-y4) + .6ACThi4               (2.7) 
while the cold exterior equation reads: 
            ηELce +   Ehi-ce             =          EWce            +     ELEH              or 

ηELce + .6 Ahi-ceThi4(1-y4) = .4Thi3.3y3.3AS + .6 ALEHThi4y4   (2.8) 
Adding Eq. (2.81) to Eq. (2.7) we get: 
  ηEL = η(ELhi+ELce) 
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  =.4Thi3.3Ahi(1+(Ace/Ahi)y3.3)+.6ACThi4(1+(ALEH/AC)y4)   (2.9) 
Inserting the values for the areas (discussed above) Eq. (2.9) reduces to: 

 70 = 1.27 Thi3.3 (1 + 1.38y3.3)         + .28 Thi4  (1 + 2.5 y4)           (2.10) 
while Eq. (2.8) reduces to: 

 23 +  1.04 Thi4 (1 - y4 ) = 1.67 Thi3.3 y 3.3   + .68 Thi4 y4          (2.11) 
Equations (2.10) and (2.11) can be solved iteratively with a solution quickly 
converging to Thi = 2.43 and y = 0.89, namely Tce = y Thi = 2.16. These values for 
the hot interior and cold exterior temperatures are in excellent agreement with 
LASNEX (2.41 & 2.15 respectively). Moreover, had we considered a simple 
geometry (no shine shields) we would be solving: 

 ηEL =           EW     +      ELEH              +     EC                         or 

 ηEL = .4T3.3AW   +     0.6 T4AL            + .6ACT4                (2.12) 

For the simple, no shine shield, geometry we find AW = 6.7 mm2 and AL and AC 
are as above. Thus Eq. (2.12) reduces to: 

70 =    2.7 T 3.3                  + .95 T4                                (2.13) 
whose solution is T = 2.31 heV, again in excellent agreement with the LASNEX 
result for no shine shield of 228 eV. The enhancement of temperature , taking the 
Lasnex numbers for example of 2.41 vs. 2.28, represent about a 20% energy savings. 
The reader can confirm this by putting those 2 values into Eq. (2.13) and getting 81 
and 67 hJ respectively. 

 This concept has been tested successfully and published. The drive increase 
in the hot interior hohlraum was measured via the decreased implosion time of a 
capsule therein. It was also noticed in those experiments that the axial shine shields 
provided yet another “knob” to control the symmetry of the illumination onto the 
capsule. 

 Thus we have presented in this lecture at least 3 ways to reduce wall losses, 
each by nearly 20%, and each, in principle, can be used in conjunction with the 
other schemes, leading to an overall energy savings of (0.8)3 or about 0.5. This will 
allow NIF to operate quite far from its damage thresholds, and still provide the 
requisite drive to the capsule in the center of the hohlraum. We invite the reader to 
dream up any other energy savings schemes! 
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Lecture III: Applications of Hohlraums to ICF 

 
Introduction: 
 Space limitations here do not allow a complete description of the ICF 
problem. We refer the reader to Rosen (1999) for a rather complete tutorial on the 
subject. We in fact intend this Lecture III portion of this paper to be an auxiliary to 
that review, by completing / supplementing it with the next 2 sections. For 
completeness though, we’ll just summarize the main points of that tutorial. 
 An ICF 1 GW reactor, with a 10% efficient driver (supplying 6 MJ pulses @ 5 
Hz to the target chamber) must have a target with gain G > 100. The inertial 
confinement time of an assembled fuel of radius R is given by R/4CS. The burn-up 
fraction fB of the fuel is given by ρR/(ρR + 70) in MKS units. We expect a target to 
operate optimally near fB= 1/3 or a ρR of 30. With that fixed, and using “nature’s 
bounty” the Q of DT being 3.4 1014 J/kg, we can see that to have the expected and 
containable output of 600 MJ we must compress DT 1000 fold so that its mass will 
be about 5 10-6 kg. This target has a momentum of 80 kg m/s or the impact an 
average person would have walking into a wall at average walking speed, which is 
obviously quite containable. 
 A spherical implosion is the least stressing way to compress matter that 
much. A hohlraum allows for good symmetry for such an implosion as described at 
the very beginning of this article. There as well we described the method of 
implosion – basically a rocket. Thus there are 2 coupling efficiencies that get us 
from driver energy ED to the thermal energy of the assembled fuel: ηC the coupling 
efficiency of the driver to thermal energy on the surface of the capsule. That hot gas 
is the exhaust of the rocket, which delivers a moving payload at efficiency ηH. That 
kinetic energy is reconverted to the thermal energy of the assembled self-stagnating 
fuel. 
 If we had to heat that entire fuel assembly to 10 keV to start the fusion 
process in earnest, it would require (1.5) ( 10 keV) (4) / 5 AMU = 1012 J/kg,  a factor 
1/340 less than the fusion pay-off QDT quoted above. The (“4”) of the above 
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equation is due to the need to heat the deuteron, the triton, and the electron that 
comes with each. However, we only burn 1/3 of that, and for a hohlraum typical 
coupling efficiencies are ηC = 0.2 and ηH = 0.2, thus the gain is only G = (340) (0.2) 
(0.2) (1/3) = 5, far too low for a reactor. The secret to high gain is to only heat a 
small central hot spot to 10 keV, and then let the alpha particle produced by the DT 
reaction stop within the surrounding fuel and do the heating. Typically that hot 
spot will have 0.1 of the surrounding dense fuel shell density, and its radius will be 
at about R/2. Thus it will have a negligible 0.01 of the mass of the fuel.  
 The requirements of a hot spot then, are to be 10 keV, and have a ρR of 3 
(kg/m2). That is the range of an alpha in a 10 keV plasma. Moreover, by the fB 
formula, it implies the hot spot will burn 5% of its fuel. That is precisely the amount 
needed to supply enough alphas to the first thin shell (a layer inside of the dense 
fuel which also has a ρR of 3 kg/m2) surrounding the hot spot to get it up to 10 keV, 
and thus launch the propagating thermonuclear burn-wave. 
 Energy is also required to compress the cold dense fuel to its high-density 
state in the shell that surrounds the hot spot. It is Fermi Degenerate matter, so its 
pressure will be PFD=2.2 106αρ5/3 (Pa) and the energy required is EFD(J) = 3.3 10 6 α 
ρ2/3 MDT (kg). Here α measures how far off the isentrope we are. We are now in a 
position to calculate the gain. 
 

VIII. Gain calculation: Conventional & Fast Ignitor 
 We begin with our incident pulse of ED= 6 MJ. With the coupling and rocket 
efficiencies each of 0.2 means EF= 0.24 MJ is in the assembled fuel. Let us assume the 
hot spot radius is 50 µ, namely RHS= 5 10-5 m. This turns out to be near optimal. 
Since the hot spot requires ρR of 3, then ρHS must = 6 104 kg/m3. Then the mass of 
the hot spot is easily calculated to be 3 10-8 kg, and its thermal energy (at the 
required 10 keV) is EHS= 3.6 104 J. Its pressure PHS = 2ni kT (the 2 because of the 
electrons) is 4.6 1016 Pa. 
 This self-stagnated assembly is isobaric, the hot spot pressure stops the cold 
fuel shell from imploding further, and pressures equilibrate PHS=PC=PFD, which can 
then tells us what the cold density is: ρC=1.6 106 kg/m3, indeed a 1000 fold denser 
than solid DT. We can plug that into the formula for the energy available for the 
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cold dense shell: EFD=EC= EF-EHS=2.4 10 5 - 3.6 10 4 = 2.04 105 J, to obtain the mass of 
the shell, MC= 4.8 10-6 kg , in line with our assumption for the mass of the reactor 
target. We can then set (4/3)πρC(R3-RHS

3)=MC to find R= 9.5 10 –5 m, thus ΔR=R-
RHS=4.5 10-5 m thus ρΔR= 70 kg/m2 thus fB= 70/(70+70)=1/2. Putting that altogether 
yields G=fBMCQDT/ED = (1/2) (4.8 10-6 kg ) (3.4 1014 J/kg) / (6 10 6 J) = 130. Thus we 
have accomplished our “mission” of showing that ICF can in principle supply a 
gain 100 target to sustain a 1 GW power reactor. 
 Before we leave this section let us compare this calculation with a fast ignitor 
scheme. In that approach we create a hot spot via an additional driver that creates 
the hot spot on the exterior of the assembled fuel. We do it quickly, so there is no 
pressure equilibrium between hot spot and cold dense fuel. Rather there is simply 
density equality (isochoric). As we shall see, this will allow the assembly to be 
larger but less dense, hence in general much less stressing to the implosion 
symmetry and stability requirements. So proceeding as before we note the 
requirements on the fast ignitor driver- it must supply EHS= 3.6 104 J in about a 
disassembly time of 10 ps, hence it must be of order 3 to 4 PW. Since now the 
densities are equal, ρC=6 104 kg/m3, so again solving for the mass of the cold 
assembly, MC= 4 10-5, an order of magnitude larger than the conventional scheme! 
With MC and ρC known, we calculate R=5.5 10-4, and ΔR=5 10–4 so ρΔR= 30 and thus 
fB=0.3. The gain then is G=fBMCQDT/ED = (0.3) (4. 10-5 kg ) (3.4 1014 J/kg) / (6 106 J) = 
670, quite an improvement!  
 Another way to look at the advantage of a fast ignitor is to see that it gives 
large gain even for a smaller driver. Large drivers mean large initial capital 
investment expense- so the smaller the better. We invite the reader to re-do this 
calculation for ED= 1 MJ not 6. The optimal hot spot scales as ED

0.5, so take RHS= 20 µ 
this time. Find ρHS = 1.5 105 kg/m3 = ρC, MHS = 5 10-9 kg, EHS= 6 kJ, Ec= .04 MJ - 6 kJ= 
3.4 104 j, thus Mc= 3.7 10-6 kg, R=1.61 10-4, ρΔR= 24, fB=.256, and G=312. Obviously 
the great advantage of the fast ignitor is mitigated by the challenging physics of 
creating this externally driven hot spot. 
 Let us return then, to the conventional approach, and deal with one final 
topic: pulse shaping. 
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IX. Pulse shaping 
 

 If we analyze our conventional hot spot gain example from the previous 
section we can reach some important conclusions. We can ask: what was the 
required kinetic energy of the dense shell as it imploding in order to supply the 
thermal energy of the fuel when it stagnated and fully assembled? Normally we 
allow an “ignition margin” of a factor of 2, so we set (1/2)McVimp

2 equal to 2EF 
which is almost = 2EC. For a cold density of order 106 as we calculated in our 
example, this then gives Vimp = 3.6 105 m/s.  
 Other “external” requirements flow from this: Since the final fuel radius was 
about 100 µ, and a typical convergence ratio to get to those high densities is of order 
30, we get an initial radius of the capsule to be 3 mm. Then an implosion time 
would be R/vimp = 10 ns, and thus a power requirement of 600 TW, and an 
irradiance on target of order 600 TW / 4π (3 mm)2 = 5 10 14 W/cm2, or about 270 eV. 
 Another question to ask is what pressure is required to push the original 
shell to the required kinetic energy. We set KE=PΔV, the “PdV” work done in 
implosion. Typically we start pushing at radius R0, and stop when the shell is 
imploded to r = R0/2, since after that there is not much volume left to exploit for 
PdV work. The driver turns off and the shell coasts inward until stagnation. For a 
shell that starts at a thickness ΔR0, then our equation leads to P= 3 1013 (ΔR0/R0). For 
stability reasons we avoid thin shells so we keep (ΔR0/R0) it to about 1/5. This tells 
us that the pressure doing the pushing is 6 1012 Pa = 60 Mbar. 
 The problem is we cannot apply that pressure to the original capsule! 
Consider the FD isentrope of solid DT. PFD= 2 10 6 ρ 5/3 = 1.4 1010 Pa for ρ0 = 200 
kg/m3. Thus 60 MB is way off the isentrope and would make it energetically very 
difficult to proceed with the implosion. Hence the need for pulse shaping. 
 If we compare the hugoniot relations for shocks vs. isentropic compression 
we learn a valuable lesson. For a jump of pressure Y=P1/P0 there will be a shocked 
density jump X=ρ1/ρ0. The Hugoniot relations tell us that X= (4Y + 1) / ( Y + 4). Let 
us compare that to Xisen = Y 1/γ for γ=5/3. For Y=1 they are equal. For Y=2, X=1.5 and 
Xisen=1.51. For Y=4, X=2.13 and Xisen=2.3. For Y=8, X=2.75 and Xisen=3.5. For infinite 
Y,  X=4 and Xisen is infinite. So as long as the pressure jumps are less than 4, the drift 



 41 

off of the isentrope via the sequential shock method will be less than 10%. Thus our 
shape pulsing strategy should be clear. The first shock will necessarily be a strong 
one, hence X=4, hence the post-shock density will be 800 kg/m3. Thus the PFD for 
that density will be 1.4 1011 Pa = 1.4 Mb, and that should precisely be the magnitude 
of our first shock, to match that and stay on the FD isentrope. After that we launch 3 
more shocks each 3.5 times bigger than the previous one. Our final pressure will be 
(3.5)3 ( 1.4 Mb) = 60 Mb as required, and now the shell has compressed to the proper 
high density to remain on the FD isentrope as we push on it at 60 Mb and accelerate 
it to the requisite implosion velocity of 3.6 10 5 m/s on its way to a successful 
thermonuclear implosion. We must of course carefully time those shocks so that all 
the shocks coalesce at very near the inside of the frozen DT shell so that most of the 
fuel will remain cold Fermi Degenerate fuel. 
 With this explanation we also can understand the need for a frozen DT shell 
and not a gaseous target. If it were gas, its original density would be low, so even at 
X=4, the isentrope will have a very low P, and hence require much larger dynamic 
range on the low side for the driver to have. Moreover, as we must keep say 97% of 
the fuel on the cold FD isentrope, it means the shocks should coalesce at about 0.3 
R0. So now when we are ready for the final push to accelerate the cold (and now 
properly dense) fuel to the proper velocity we do not have very much volume left 
to do PdV work. Thus the final push must be much larger than 60 Mb, so we again 
stress the dynamic range of the driver this time on the high side! All told this is an 
untenable situation, and we must live with the complexities of frozen DT solid 
shelled targets. 
 This concludes our ICF overview. How coupling and gain scale with driver 
size is covered in Rosen (1999). Comparison with direct drive is also covered there. 
Direct drive has much better coupling efficiencies, but are more challenged on the 
hydro stability issue, which is beyond the scope of this review. It too is covered in 
Rosen (1999). Direct drive is making great strides in solving its stability issues, and 
in principle could have higher gains than indirect drive. HIF indirect drive targets 
have no LEH, so their coupling efficiency is better than laser driven hohlraums so 
they can reach a gain 100 at about 3 MJ driver. They show great promise as well 
since the drivers are high efficiency and in principle high reliability. 
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In summary we have shown the principles of ICF hohlraums. We showed 
how they naturally have an increase of efficiency of coupling initial laser energy to 
absorption by the fuel capsule as we increase in scale from Nova to NIF to reactors. 
This helps motivate the predictions of the complex LASNEX simulations that NIF 
will achieve moderate gains of 10-20, and reactors will achieve higher gains 
allowing them to be competitive energy sources for the next century. 
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